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First, Some Announcements!



  

Second Midterm Logistics
● Our second midterm is next Tuesday, February 

25th, from 7-9 PM. Locations vary, but mostly 
CEMEX.

● Topic coverage is primarily lectures 06 – 13 
(functions through induction) and PS3 – PS5. 
Finite automata and onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – 

PS2 and Lectures 00 – 05 are also fair game.
● Seating assignments are posted.
● Anisha and Zach will host an exam review session 

this Sunday, February 23rd, 4-6 PM, in CoDa E160.



  

Preparing for the Exam
● The top skills that will serve you well on this exam:

● Knowing how to set up a proof. This is a recurring theme 
across functions, sets, graphs, pigeonhole, and induction.

● Distinguishing between assuming and proving. This 
similarly cuts across all of these topics.

● Reading new definitions. This is at the heart of 
mathematical reasoning.

● Writing proofs in line with definitions. Folks often ask 
about whether they’re being rigorous enough. Often 
“rigorous enough” simply means “following what the 
definitions say.”

● Our personal recommendation: when working through 
practice problems, pay super extra close attention to 
these areas.



  

Preparing for the Exam
● As with the first midterm exam, we’ve posted a bunch of 

practice exams on the course website.
● There are ten practice exams (yes, really!). We realistically don’t 

expect anyone to complete them all. They’re there to give you a 
feeling of what the exam might look like.

● Some general notes on preparing:
● Q5 and Q6 on PS6, while technically on topics that aren’t covered 

on the midterm, are great practice for the sorts of reasoning 
you’ll need on the exam.

● Keep the TAs in the loop when studying. Ask for feedback on 
any proofs you write when getting ready for the exam.

● Don’t skip on biological care and maintenance. Exams can be 
stressful, but please make time for basic things like showering, 
eating, etc. and for self-care in whatever form that takes for you.

● You can do this. Best of luck on the exam!
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Problem Set Five Graded

75th Percentile: 44 / 49 (90%)
50th Percentile: 38 / 49 (78%)
25th Percentile: 34 / 82 (69%)



  

On to CS103!



  

Recap from Last Time



  

Regular Languages
● A language L is called a regular language if 

there is a DFA or an NFA for L.
● Theorem: The following are equivalent:

● L is a regular language.
● There is a DFA D where (ℒ D) = L.
● There is an NFA N where (ℒ N) = L.

● In other words, knowing any one of the above 
three facts means you know the other two.



  

Language Concatenation
● If w ∈ Σ* and x ∈ Σ*, then wx is the 

concatenation of w and x.
● If L₁ and L₂ are languages over Σ, the 

concatenation of L₁ and L₂ is the language 
L₁L₂ defined as

L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb }, 

then
L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }



  

Lots and Lots of Concatenation
● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.
{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples 
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation
● We can define what it means to 

“exponentiate” a language as follows:
L0 = {ε}        Ln+1 = LLn

● So, for example, { aa, b }3 is the language
{ aaaaaa, aaaab, aabaa, aabb,

baaaa, baab, bbaa, bbb}



  

The Kleene Closure
● An important operation on languages is 

the Kleene Closure, which is defined as
L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }

● Mathematically:
w ∈ L*     iff     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating zero or more strings in L 
together, possibly with repetition.



  

The Kleene Closure
If L = { a, bb }, then L* = {

ε,
a, bb,

aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…
}

Think of L* as the set of strings you can 
make if you have a collection of rubber 
stamps – one for each string in L – and 
you form every possible string that can be 

made from those stamps.



  

Closure Properties
● Theorem: If L₁ and L₂ are regular 

languages over an alphabet Σ, then so 
are the following languages:
● L₁ ∪ L₂
● L₁L₂
● L₁*

● These (and other) properties are called 
closure properties of the regular 
languages.



  

New Stuff!



  

Another View of Regular Languages



  

Devices for Articulating Regular Languages

● Finite Automata

● Set (or other Mathematical) Notation

● State Transition Table

● New! Regular Expressions

q₀   start     
a, b

 q₁
a, b

q₀

{ w ∈ Σ* | w’s length is even }

q0

q1

a b
q1q1

q0q0



  

Devices for Articulating Regular Languages

● Finite Automata

● Set (or other Mathematical) Notation

● State Transition Table

● New! Regular Expressions

q₀   start     
a, b

 q₁
a, b

q₀

{ w ∈ Σ* | w’s length is even }

q0

q1

a b
q1q1

q0q0

Note: This one is not unique to regular 
languages! We can express non-regular 

languages with set builder notation, as well. 
More on that another day, when we explore 

other families of languages.



  

Regular Expressions
● Regular expressions are a way of describing a 

language via a string representation.
● They’re used just about everywhere:

● They’re built into the JavaScript language and used for 
data validation.

● They’re used in the UNIX grep and flex tools to search 
files and build compilers.

● They’re employed to clean and scrape data for large-
scale analysis projects.

● Conceptually, regular expressions are strings 
describing how to assemble a larger language out 
of smaller pieces.



  

Rethinking Regular Languages
● We currently have several tools for 

showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages 

together via closure properties to form L.
● We have not spoken much of this last 

idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● This is a bottom-up approach to the 
regular languages.



  

Atomic Regular Expressions
● The regular expressions begin with three 

simple building blocks.
● The symbol Ø is a regular expression that 

represents the empty language Ø.
● For any a ∈ Σ, the symbol a is a regular 

expression for the language {a}.
● The symbol ε is a regular expression that 

represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!



  

Compound Regular Expressions
● If R₁ and R₂ are regular expressions, R₁R₂ is 

a regular expression for the concatenation of 
the languages of R₁ and R₂.

● If R₁ and R₂ are regular expressions, R₁ ∪ R₂ 
is a regular expression for the union of the 
languages of R₁ and R₂.

● If R is a regular expression, R* is a regular 
expression for the Kleene closure of the 
language of R.

● If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



  

Operator Precedence
● Here’s the operator precedence for 

regular expressions:
(R)
R*

R₁R₂
R₁ ∪ R₂ 

● So ab*c∪d is parsed as ((a(b*))c)∪d



  

Regular Expression Examples
● The regular expression trick∪treat represents 

the language
{ trick, treat }.

● The regular expression booo* represents the 
regular language

{ boo, booo, boooo, … }.
● The regular expression candy!(candy!)* 

represents the regular language
{ candy!, candy!candy!, candy!candy!candy!, … }.



  

Regular Expressions, Formally
● The language of a regular expression is the 

language described by that regular expression.
● Formally:

● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}
● ℒ(R1R2) = (ℒ R1) (ℒ R2)
● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)
● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply 
this recursive definition to

a(b∪c)((d))

and see what you get.



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.
(a  b)*∪ aa(a  b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.
Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

Let Σ = {a, b}.
Let L = { w ∈ Σ* | |w| = 4 }.

The length of 
a string w is 
denoted |w|



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4



  

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for 
the language L. Which of these are correct?

 

Σ*aΣ*
b*ab*  b*∪
b*(a  ε)b*∪
b*a*b*  b*∪
b*(a*  ε)b*∪

 

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*

bbbbabbb
bbbbbb
abbb
a



  

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+



  

For Comparison

a+(.a+)*@a+(.a+)+

q1
start q3

@

q2

.       a

q4
a

       a        a

q5
. q6

q7

.       a

       a

a

q8

@, .

@, .             @            @, .
 @

@, .

q0
a

@, .
Σ



  

Shorthand Summary
● Rn is shorthand for RR … R (n times).

● Edge case: define R⁰ = ε.
● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R  ε)∪ , meaning 

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or 

more copies of R.”



  

The Lay of the Land



  

The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ R) is regular.
Proof idea: Use induction!
● The atomic regular expressions all represent 

regular languages.
● The combination steps represent closure 

properties.
● So anything you can make from them must 

be regular!



  

Thompson’s Algorithm
● In practice, many regex matchers use an 

algorithm called Thompson's algorithm 
to convert regular expressions into NFAs 
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken 
Thompson, one of the co-inventors of 
Unix!



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!
Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  

These are all regular 
expressions!



  

Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    

Note: Actual NFAs aren't 
allowed to have transitions 
like these. This is just a 

thought experiment.



  

Key Idea 1: Imagine that we can label 
transitions in an NFA with arbitrary regular 

expressions.



  

Generalizing NFAs

q₀
start ab  b∪ q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Key Idea 2: If we can convert an NFA into 
a generalized NFA that looks like this...

...then we can easily read off a regular 
expression for the original NFA.

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂ R , and ₂₁ R  are ₂₂
arbitrary regular expressions.



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean 
regular expression from this NFA?



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform 
this NFA so that it looks like this:

q₀
start some-regex q₁



  

The State-Elimination Algorithm
● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the 

NFA.
● Add an ε-transition from qs to the old start state of N.
● Add ε-transitions from each accepting state of N to qf, then 

mark them as not accepting.
● Repeatedly remove states other than qs and qf from 

the NFA by “shortcutting” them until only two states 
remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

The State-Elimination Algorithm
● To eliminate a state q from the automaton, do the following 

for each pair of states q₀ and q₁, where there's a transition 
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.
● Let Rout be the regex on the transition from q to q₁.
● If there is a regular expression Rstay on a transition from q 

to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled 
((Rin)(Rout))

● If a pair of states has multiple transitions between them 
labeled R₁, R₂, …, Rₖ, replace them with a single transition 
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The first step is going to be a
bit weird...



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate 
this state from 

the NFA?



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union 
to combine these 

transitions together.



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Why This Matters
● The equivalence of regular expressions 

and finite automata has practical 
relevance.
● Regular expression matchers have all the 

power available to them of DFAs and NFAs.
● This also is hugely theoretically 

significant: the regular languages can be 
assembled “from scratch” using a small 
number of operations!



  

Your Action Items
● Read “Guide to Regexes”

● There’s a lot of information and advice there 
about how to write regular expressions, plus 
a bunch of worked exercises.

● Read “Guide to State Elimination”
● It’s a beautiful algorithm. The Guide goes 

into a lot more detail than what we did here.



  

Next Time
● Intuiting Regular Languages

● What makes a language regular?
● The Myhill-Nerode Theorem

● The limits of regular languages.
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