

Lecture 17: Regular Expressions

First, Some Announcements!

Second Midterm Logistics

- Our second midterm is next *Tuesday, February* 25th, from 7-9 PM. Locations vary, but mostly CEMEX.
- Topic coverage is primarily lectures 06 13 (functions through induction) and PS3 – PS5.
 Finite automata and onward won't be tested here.
 - Because the material is cumulative, topics from PS1 PS2 and Lectures 00 – 05 are also fair game.
- Seating assignments are posted.
- Anisha and Zach will host an exam review session this Sunday, February 23^{rd} , 4-6 PM, in CoDa E160.

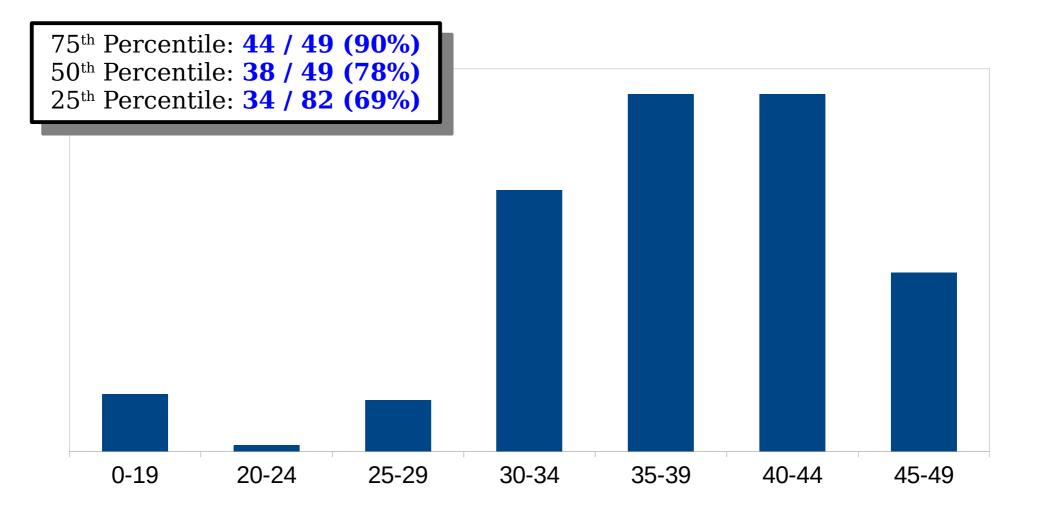
Preparing for the Exam

- The top skills that will serve you well on this exam:
 - *Knowing how to set up a proof.* This is a recurring theme across functions, sets, graphs, pigeonhole, and induction.
 - **Distinguishing between assuming and proving**. This similarly cuts across all of these topics.
 - *Reading new definitions*. This is at the heart of mathematical reasoning.
 - Writing proofs in line with definitions. Folks often ask about whether they're being rigorous enough. Often "rigorous enough" simply means "following what the definitions say."
- Our personal recommendation: when working through practice problems, pay super extra close attention to these areas.

Preparing for the Exam

- As with the first midterm exam, we've posted a bunch of practice exams on the course website.
 - There are ten practice exams (yes, really!). We realistically don't expect anyone to complete them all. They're there to give you a feeling of what the exam might look like.
- Some general notes on preparing:
 - Q5 and Q6 on PS6, while technically on topics that aren't covered on the midterm, are great practice for the sorts of reasoning you'll need on the exam.
 - *Keep the TAs in the loop when studying*. Ask for feedback on any proofs you write when getting ready for the exam.
 - Don't skip on biological care and maintenance. Exams can be stressful, but please make time for basic things like showering, eating, etc. and for self-care in whatever form that takes for you.
- *You can do this*. Best of luck on the exam!

Problem Set Five Graded



On to CS103!

Recap from Last Time

Regular Languages

- A language L is called a *regular language* if there is a DFA or an NFA for L.
- **Theorem:** The following are equivalent:
 - *L* is a regular language.
 - There is a DFA D where $\mathcal{L}(D) = L$.
 - There is an NFA N where $\mathcal{L}(N) = L$.
- In other words, knowing any one of the above three facts means you know the other two.

Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the *concatenation* of w and x.
- If L_1 and L_2 are languages over Σ , the concatenation of L_1 and L_2 is the language L_1L_2 defined as

 $L_1L_2 = \{ x \mid \exists w_1 \in L_1. \exists w_2 \in L_2. x = w_1w_2 \}$

• Example: if $L_1 = \{ a, ba, bb \}$ and $L_2 = \{ aa, bb \}$, then

 $L_1L_2 = \{ aaa, abb, baaa, babb, bbaa, bbbb \}$

Lots and Lots of Concatenation

- Consider the language L = { aa, b }
- LL is the set of strings formed by concatenating pairs of strings in L.

{ aaaa, aab, baa, bb }

• LLL is the set of strings formed by concatenating triples of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

• *LLLL* is the set of strings formed by concatenating quadruples of strings in *L*.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaaa, baaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

• We can define what it means to "exponentiate" a language as follows:

$$L^0 = \{\varepsilon\} \qquad L^{n+1} = LL^n$$

• So, for example, $\{aa, b\}^3$ is the language

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

The Kleene Closure

 An important operation on languages is the *Kleene Closure*, which is defined as

 $L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N} . w \in L^n \}$

• Mathematically:

$w \in L^*$ iff $\exists n \in \mathbb{N}. w \in L^n$

• Intuitively, all possible ways of concatenating zero or more strings in *L* together, possibly with repetition.

The Kleene Closure

If $L = \{ a, bb \}$, then $L^* = \{ \}$

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as the set of strings you can make if you have a collection of rubber stamps - one for each string in L - and you form every possible string that can be made from those stamps.

Closure Properties

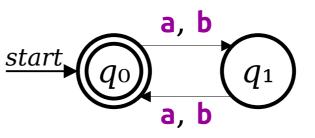
- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - $L_1 \cup L_2$
 - L_1L_2
 - *L*₁*
- These (and other) properties are called *closure properties of the regular languages*.

New Stuff!

Another View of Regular Languages

Devices for Articulating Regular Languages

• Finite Automata



• Set (or other Mathematical) Notation

{ $w \in \Sigma^* | w's \text{ length is even }$ }

• State Transition Table

• New! Regular Expressions

$$\begin{array}{c|cc}
 a & b \\
 q_0 & q_1 & q_1 \\
 q_1 & q_0 & q_0
\end{array}$$

Devices for Articulating Regular Languages

Finite Automata

• Set (or other Mathematical) Notation

{ $w \in \Sigma^* | w's \text{ length is even }$ }

State Transition

• *New!* Regular

Note: This one is not unique to regular languages! We can express non-regular languages with set builder notation, as well. More on that another day, when we explore other families of languages.

Regular Expressions

- **Regular expressions** are a way of describing a language via a string representation.
- They're used just about everywhere:
 - They're built into the JavaScript language and used for data validation.
 - They're used in the UNIX grep and flex tools to search files and build compilers.
 - They're employed to clean and scrape data for largescale analysis projects.
- Conceptually, regular expressions are strings describing how to assemble a larger language out of smaller pieces.

Rethinking Regular Languages

- We currently have several tools for showing a language *L* is regular:
 - Construct a DFA for *L*.
 - Construct an NFA for *L*.
 - Combine several simpler regular languages together via closure properties to form *L*.
- We have not spoken much of this last idea.

Constructing Regular Languages

- **Idea:** Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- This is a bottom-up approach to the regular languages.

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \mathcal{O} is a regular expression that represents the empty language \mathcal{O} .
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ϵ is a regular expression that represents the language $\{\epsilon\}$.
 - Remember: $\{\epsilon\} \neq \emptyset$!
 - Remember: $\{\epsilon\} \neq \epsilon!$

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \cup R_2$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, \mathbb{R}^* is a regular expression for the *Kleene closure* of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

• Here's the operator precedence for regular expressions:

(R) R* R1R2 R1 ∪ R2 • So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expression Examples

• The regular expression trickUtreat represents the language

{ trick, treat }.

• The regular expression **booo*** represents the regular language

 $\{ boo, booo, boooo, ... \}.$

- The regular expression candy!(candy!)* represents the regular language
 - { candy!, candy!candy!, candy!candy!, ... }.

Regular Expressions, Formally

- The *language of a regular expression* is the language described by that regular expression.
- Formally:
 - $\mathscr{L}(\mathbf{3}) = \{\mathbf{3}\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathscr{L}(a) = \{a\}$
 - $\mathcal{L}(R_1R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2)$
 - $\mathscr{L}(R_1 \cup R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathcal{L}((R)) = \mathcal{L}(R)$

Worth this re	while activity: App ecursive definition	ly to
a(b∪c)((d))		
and	see what you get.	

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

(a U b)*aa(a U b)*

bbabbbaabab aaaa bbbbbabbbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

Σ*aaΣ*

bbabbbaabab aaaa bbbbbabbbbbaabbbbb

Let $\Sigma = \{a, b\}$. Let $L = \{w \in \Sigma^* | |w| = 4\}$.

> The length of a string w is denoted IWI

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

ΣΣΣΣ

aaaa baba bbbbb baaa

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

Σ4

aaaa baba bbbb baaa

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

Here are some candidate regular expressions for the language *L*. Which of these are correct?

Σ*aΣ* b*ab* U b* b*(a U ε)b* b*a*b* U b* b*(a* U ε)b*

Answer at https://cs103.stanford.edu/pollev

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*(a U ε)b*

bbbbbbb bbbbbb abbb a

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*a?b*

bbbbbbb bbbbbb abbb a

A More Elaborate Design

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

a⁺ (.a⁺)* @ a⁺.a⁺ (.a⁺)*

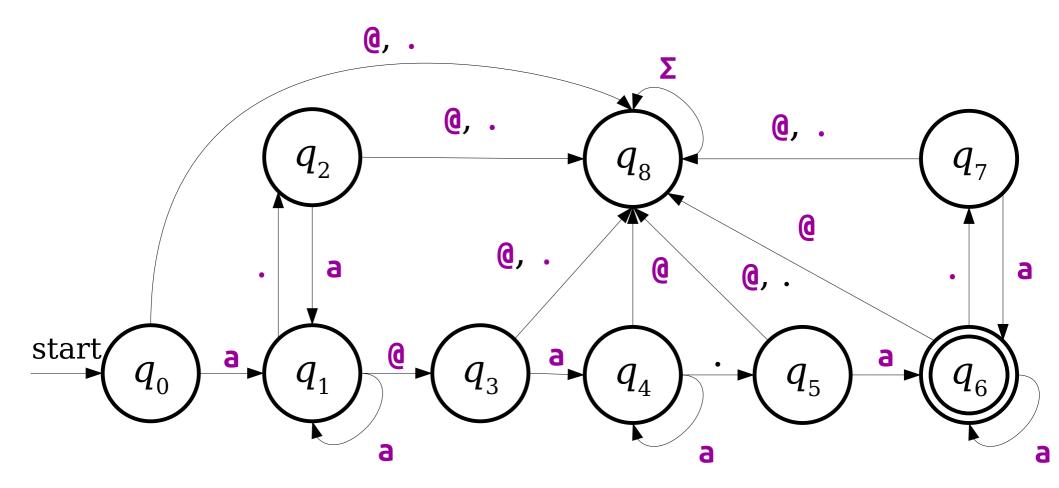
A More Elaborate Design

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

a⁺ (.a⁺)* @ a⁺(.a⁺)⁺

For Comparison

a⁺(.a⁺)*@a⁺(.a⁺)⁺



Shorthand Summary

- **R**^{*n*} is shorthand for **RR** ... **R** (*n* times).
 - Edge case: define $R^{\circ} = \epsilon$.
- $\pmb{\Sigma}$ is shorthand for "any character in $\pmb{\Sigma}."$
- **R?** is shorthand for (**R** $\cup \varepsilon$), meaning "zero or one copies of *R*."
- **R**⁺ is shorthand for **RR**^{*}, meaning "one or more copies of *R*."

The Lay of the Land

The Power of Regular Expressions

Theorem: If *R* is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Use induction!

- The atomic regular expressions all represent regular languages.
- The combination steps represent closure properties.
- So anything you can make from them must be regular!

Thompson's Algorithm

- In practice, many regex matchers use an algorithm called *Thompson's algorithm* to convert regular expressions into NFAs (and, from there, to DFAs).
 - Read Sipser if you're curious!
- **Fun fact:** the "Thompson" here is Ken Thompson, one of the co-inventors of Unix!

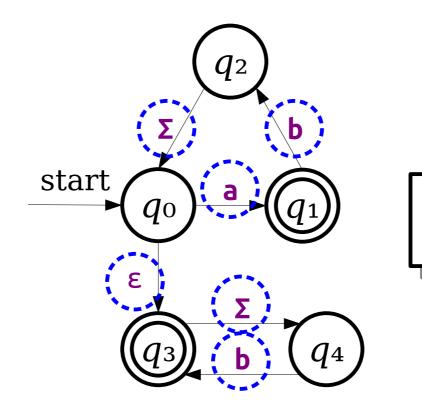
The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

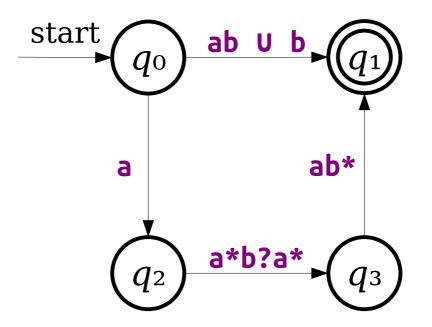
Proof idea: Show how to convert an arbitrary NFA into a regular expression.

Generalizing NFAs



These are all regular expressions!

Generalizing NFAs



Note: Actual NFAs aren't allowed to have transitions like these. This is just a thought experiment. **Key Idea 1:** Imagine that we can label transitions in an NFA with arbitrary regular expressions.

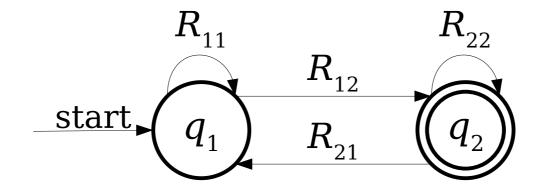
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA?

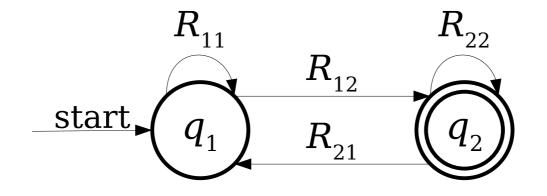
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA? *Key Idea 2:* If we can convert an NFA into a generalized NFA that looks like this...

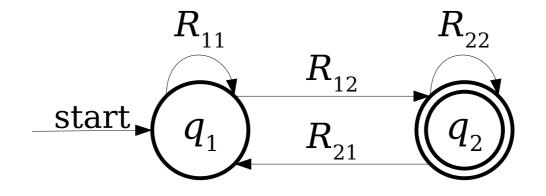
...then we can easily read off a regular expression for the original NFA.

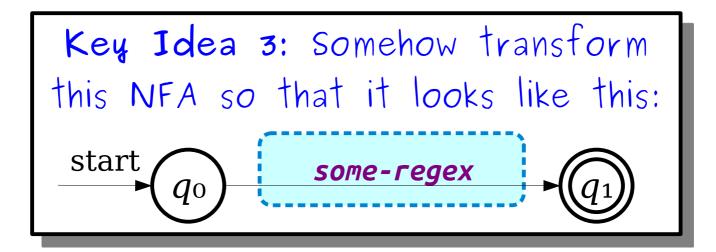


Here, R11, R12, R21, and R22 are arbitrary regular expressions.



Question: Can we get a clean regular expression from this NFA?



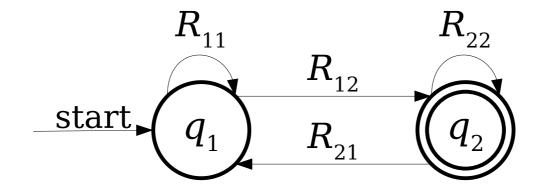


The State-Elimination Algorithm

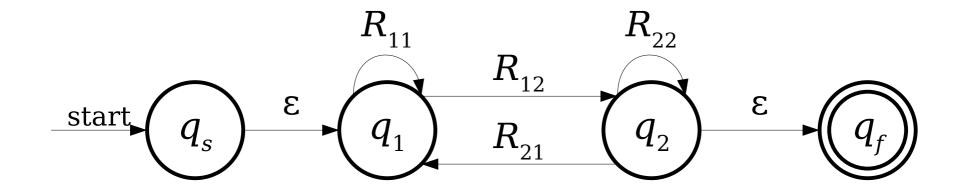
- Start with an NFA N for the language L.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add an ε -transition from q_s to the old start state of N.
 - Add $\epsilon\text{-transitions}$ from each accepting state of N to $q_{\rm f}$, then mark them as not accepting.
- Repeatedly remove states other than $q_{\rm s}$ and $q_{\rm f}$ from the NFA by "shortcutting" them until only two states remain: $q_{\rm s}$ and $q_{\rm f}$.
- The transition from q_s to q_f is then a regular expression for the NFA.

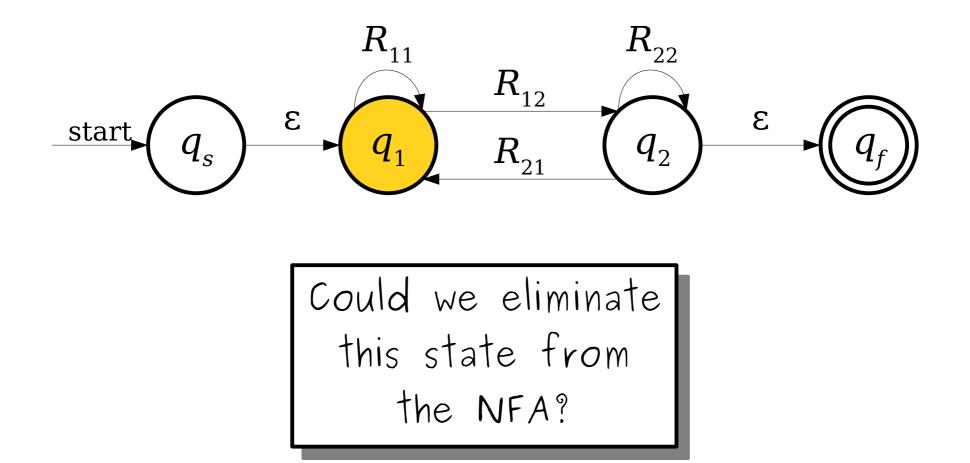
The State-Elimination Algorithm

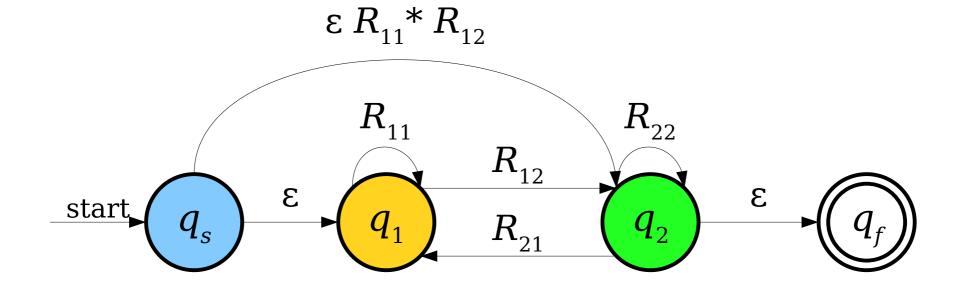
- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q.
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{stay})^*(R_{out})).$
 - If there isn't, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{out}))$
- If a pair of states has multiple transitions between them labeled $R_1, R_2, ..., R_k$, replace them with a single transition labeled $R_1 \cup R_2 \cup ... \cup R_k$.



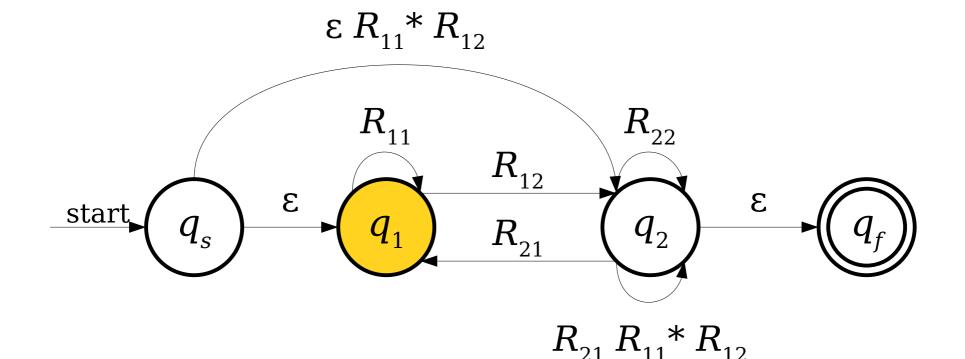
The first step is going to be a bit weird...

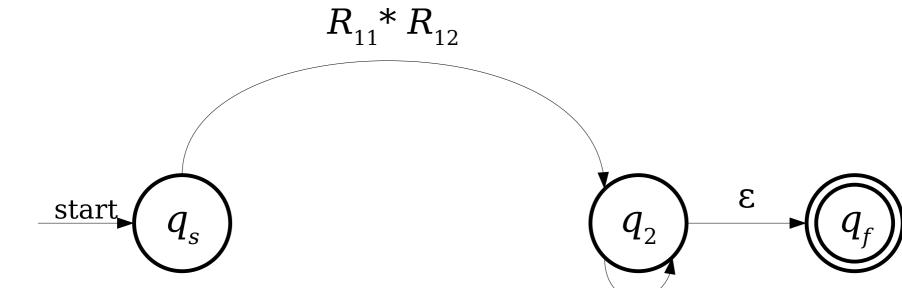






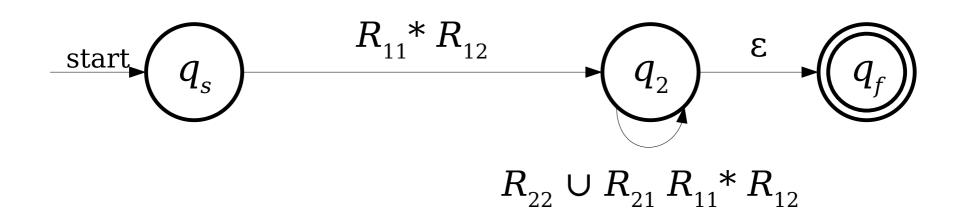
Note: We're using concatenation and Kleene closure in order to skip this state.



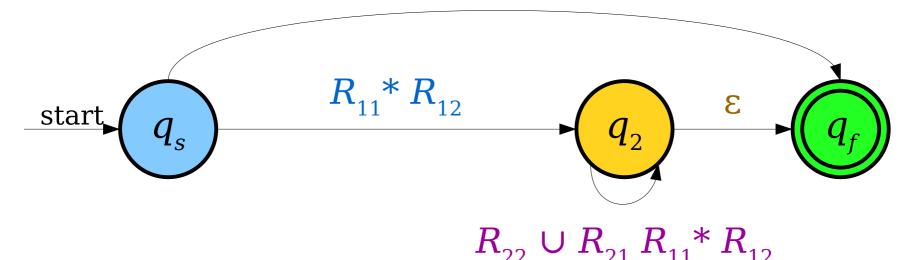


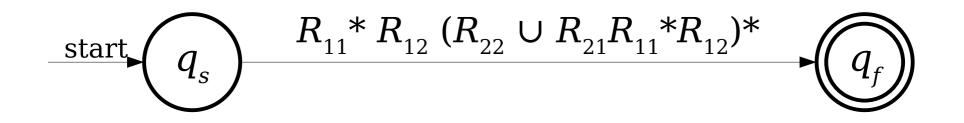
 $R_{_{22}} \cup R_{_{21}} R_{_{11}} * R_{_{12}}$

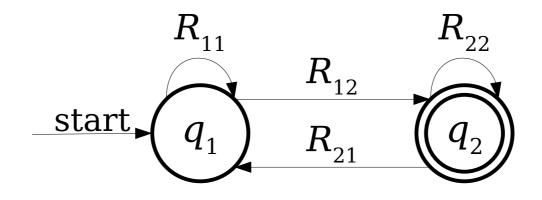
Note: We're using union to combine these transitions together.



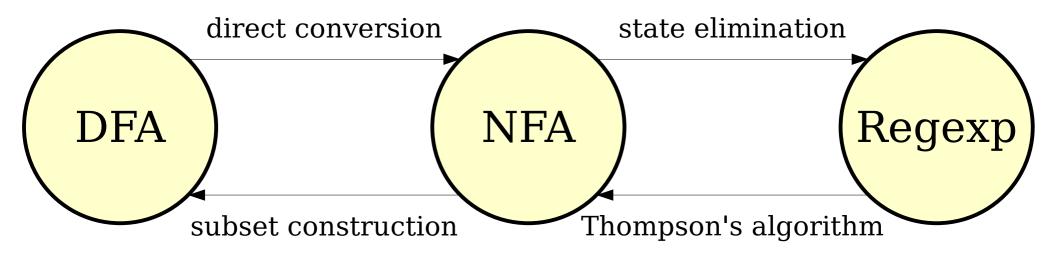
 $R_{11}^* R_{12} (R_{22} \cup R_{21} R_{11}^* R_{12})^* ε$







Our Transformations



Theorem: The following are all equivalent:

- \cdot *L* is a regular language.
- · There is a DFA *D* such that $\mathcal{L}(D) = L$.
- · There is an NFA N such that $\mathcal{L}(N) = L$.
- · There is a regular expression R such that $\mathcal{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Regular expression matchers have all the power available to them of DFAs and NFAs.
- This also is hugely theoretically significant: the regular languages can be assembled "from scratch" using a small number of operations!

Your Action Items

- Read "Guide to Regexes"
 - There's a lot of information and advice there about how to write regular expressions, plus a bunch of worked exercises.
- **Read "Guide to State Elimination"**
 - It's a beautiful algorithm. The Guide goes into a lot more detail than what we did here.

Next Time

- Intuiting Regular Languages
 - What makes a language regular?
- The Myhill-Nerode Theorem
 - The limits of regular languages.